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Verifier(instance,
         solution?,
         fail_reason*):
  
  product = 1
  for c in solution?:
    if not c is not prime:
      return False
    product = product * c

  return product == instance

Solver1(instance):

  solution = empty_array()

  for i in 2..instance:
    while instance mod i == 0:
      instance = instance div i
      solution.append(i)

  return solution

Solver2(instance):
  
  if instance mod 2 == 0:
    return [2, instance div 2]

  return [instance]

*Parameter fail_reason is used
whenever necessary to speed up
computations on Verifier

Instance Solver1 Verifier

34 [2, 17] True

25 [5, 5] True

Example: Factorization

Instance Solver2 Verifier

34 [2, 17] True

25 [25] False

~ Made by Petitioner ~ Made by Creator1 ~ Made by Creator2



  

Main Observation
Solver is not correct

<=>

∃ (instance, fail_reason) s.t. Verifier(instance, Solver(instance), fail_reason) = False

Basic Flow of a Competition

1) The Petitioner submits the Verifier

2) A Creator submits a Solver and pays a deposit

3) a. A Tester (human being) finds a “counter-instance”
     => Solver rejected, Tester receives the deposit
 

 b. No “counter-instance” found within a predefined time period
     => Solver accepted, deposit refunded to Creator

Ethereum can
execute code &

handle payments
automatically!

Blockchain ensures
fully transparent

processes

Basic Flow of a Competition



  
Similar process when submitting a Solver
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Enforcing Solver Complexity Constraints
● The compiler outputs instructions that measure steps & space used by Solvers
● The Petitioner submits one more function to limit the allowed steps/space of Solvers:
ComplexityConstraints: instance  (max_steps, max_space)→

What ‘s Next: Proofs of correctness 
The Platform will be able to, also, validate proofs of correctness
 

● Definitely correct accepted algorithms
● Not relying on Testers
● No need to wait for a predefined time period

Computer-based
proof validation

will be automated
thus error-free

Limitations 
● Verifiers & Solvers must be able to be implemented (no pure theoretic constructs)
● Verifiers & Solvers must run in (gas) attainable time/space

➢ Hint: Verifiers can utilize the fail_reason parameter to reduce complexity
● Solvers can only be judged per instance, not on average
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