
General algorithmic problem solving competitions

with crowd-sourced solution validation

A blockchain-based platform design

Efstathios Aliprantis
Athens University of Economics and Business

GEC 2021, Greece

Petitioner

I have a problem,
I need an algorithm

Blockchain-based
Platform

I fully moderate
the competition

& determine
the winner

Experts
Committee

We judge
submitted algorithms

Algorithm Competitions

Proposed Blockchain-based PlatformA Traditional Approach

I can create algorithms

Creator

Icons by Icons8

https://icons8.com/

Verifier(instance,
 solution?,
 fail_reason*):

 product = 1
 for c in solution?:
 if not c is not prime:
 return False
 product = product * c

 return product == instance

Solver1(instance):

 solution = empty_array()

 for i in 2..instance:
 while instance mod i == 0:
 instance = instance div i
 solution.append(i)

 return solution

Solver2(instance):

 if instance mod 2 == 0:
 return [2, instance div 2]

 return [instance]

*Parameter fail_reason is used
whenever necessary to speed up
computations on Verifier

Instance Solver1 Verifier

34 [2, 17] True

25 [5, 5] True

Example: Factorization

Instance Solver2 Verifier

34 [2, 17] True

25 [25] False

~ Made by Petitioner ~ Made by Creator1 ~ Made by Creator2

Main Observation
Solver is not correct

<=>

∃ (instance, fail_reason) s.t. Verifier(instance, Solver(instance), fail_reason) = False

Basic Flow of a Competition

1) The Petitioner submits the Verifier

2) A Creator submits a Solver and pays a deposit

3) a. A Tester (human being) finds a “counter-instance”
 => Solver rejected, Tester receives the deposit

 b. No “counter-instance” found within a predefined time period
 => Solver accepted, deposit refunded to Creator

Ethereum can
execute code &

handle payments
automatically!

Blockchain ensures
fully transparent

processes

Basic Flow of a Competition

Similar process when submitting a Solver

Source
Code

Step 1) Deploy on Ethereum

Compile EVM
Bytecode

Deploy

Ethereum

Verifier
Smart

Contact

0xAddress

Step 2) Submit on the Platform

Source
Code

Parse
Parsed
Source
Code

Submit

0xAddress
(from previous step)

——————————————————————

Our Platform’s Smart Contact

0xAddress

—————

Parsed
Source
Code

Compile &

Compare

with @0xAddress

EVM
Bytecode

Source
CodeRestore

Submitting a Verifier

Enforcing Solver Complexity Constraints
● The compiler outputs instructions that measure steps & space used by Solvers
● The Petitioner submits one more function to limit the allowed steps/space of Solvers:
ComplexityConstraints: instance (max_steps, max_space)→

What ‘s Next: Proofs of correctness
The Platform will be able to, also, validate proofs of correctness

● Definitely correct accepted algorithms
● Not relying on Testers
● No need to wait for a predefined time period

Computer-based
proof validation

will be automated
thus error-free

Limitations
● Verifiers & Solvers must be able to be implemented (no pure theoretic constructs)
● Verifiers & Solvers must run in (gas) attainable time/space

➢ Hint: Verifiers can utilize the fail_reason parameter to reduce complexity
● Solvers can only be judged per instance, not on average

References (Ethereum)
● Vitalik Buterin, 2013. “A Next-Generation Smart Contract and Decentralized Application

Platform”. URL: https://ethereum.org/en/whitepaper

● Gavin Wood, 2014. “Ethereum: A Secure Decentralised Generalised Transaction Ledger”. URL:
http://gavwood.com/Paper.pdf

Some Related Work
● Dilia Rodriguez, 2016, “Verification Games: Crowd-Sourced Formal Verification”. Air Force Research

Laboratory AFRL-RI-RS-TR-2016-096, URL: https://apps.dtic.mil/sti/pdfs/AD1006471.pdf

● Borching Su, 2018, “MathCoin: A Blockchain Proposal that Helps Verify Mathematical Theorems In
Public”. IACR Cryptol. ePrint Arch. 2018: 271, URL: https://eprint.iacr.org/2018/271.pdf

● For a list of platforms for “Algorithm Programming Competitions” see https://cs.au.dk/~gerth/code
(NOTE: Our Platform differs from listed ones as it aims to solve problems of interest for Petitioners
while the listed ones pose problems already solved as a mean to challenge the contestants)

Acknowledgments

I’d like to thank my advisor prof. Eugénie Foustoucos for her constant guidance

https://ethereum.org/en/whitepaper
http://gavwood.com/Paper.pdf
https://apps.dtic.mil/sti/pdfs/AD1006471.pdf
https://eprint.iacr.org/2018/271.pdf
https://cs.au.dk/~gerth/code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

