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Example: Factorization

Verifier(instance,
solution?,
fail_reason*):

product = 1
for c in solution?:
if not c is not prime:
return False
product = product * c

return product == instance

~ Made by Petitioner

*Parameter fail_reason is used
whenever necessary to speed up
computations on Verifier

Solveri(instance):
solution = empty_array()
for 1 in 2..1instance:
while instance mod 1 ==
instance = instance div 1
solution.append(i)

return solution

~ Made by Creatorl

Instance Solverl Verifier
34 [2, 17] True
25 [5, 5] True

Solver2(instance):

if instance mod 2 ==

return [2, instance div 2]

return [instance]

~ Made by Creator2
Instance Solver2
34 [2, 17]
25 [25]

Verifier
True

False



Basic Flow of a Competition

Main Observation
Solver is not correct
<=>

J (instance, fail_reason) s.t. Verifier(instance, Solver(instance), fail _reason) = False

Basic Flow of a Competition

1) The Petitioner submits the Verifier Ethereum can
execute code &
handle payments

2) A Creator submits a Solver and pays a deposit :
automatically!

3) a. A Tester (human being) finds a “counter-instance”
=> Solver rejected, Tester receives the deposit

b. No “counter-instance” found within a predefined time period BloB, el Sl
| ' fully transparent

=> Solver accepted, deposit refunded to Creator processes




Submitting a Verifier

Step 1) Deploy on Ethereum Ethereum
OxAddress
Source : EVM Verifier
Code ‘ comple \ Bytecode Deploy \ Smart
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Similar process when submitting a Solver I 4




Enforcing Solver Complexity Constraints
* The compiler outputs instructions that measure steps & space used by Solvers

* The Petitioner submits one more function to limit the allowed steps/space of Solvers:
ComplexityConstraints: instance - (max_steps, max_space)

Limitations
* Verifiers & Solvers must be able to be implemented (no pure theoretic constructs)
* Verifiers & Solvers must run in (gas) attainable time/space
> Hint: Verifiers can utilize the fail _reason parameter to reduce complexity
* Solvers can only be judged per instance, not on average

What ‘s Next: Proofs of correctness

The Platform will be able to, also, validate proofs of correctness | Computer-based

. . proof validation
* Definitely correct accepted algorithms il o AUTEE e

* Not relying on Testers - thus error-free
 No need to wait for a predefined time period -
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