Efstathios Aliprantis
Athens University of Economics and Business

GEC 2021, Greece

Algorithm Competitions

| can create algorithms
| have a problem, «

ﬁ‘} = I Ineed an algorithm -
Petitioner Creator
A Traditional Approach Proposed Blockchain-based Platform

_ | fully moderate
We judge

I
I p
/ _ _ R the competition
_ submitted algorithms I . iy | & determine
- I fII — the winner
ofe . %
| n
I
I

Experts

_ Blockchain-based
Committee

Platform

Icons by Icons8

https://icons8.com/

Example: Factorization

Verifier(instance,
solution?,
fail_reason*):

product = 1
for c in solution?:
if not c is not prime:
return False
product = product * c

return product == instance

~ Made by Petitioner

*Parameter fail_reason is used
whenever necessary to speed up
computations on Verifier

Solveri(instance):
solution = empty_array()
for 1 in 2..1instance:
while instance mod 1 ==
instance = instance div 1
solution.append(i)

return solution

~ Made by Creatorl

Instance Solverl Verifier
34 [2, 17] True
25 [5, 5] True

Solver2(instance):

if instance mod 2 ==

return [2, instance div 2]

return [instance]

~ Made by Creator2
Instance Solver2
34 [2, 17]
25 [25]

Verifier
True

False

Basic Flow of a Competition

Main Observation
Solver is not correct
<=>

J (instance, fail_reason) s.t. Verifier(instance, Solver(instance), fail _reason) = False

Basic Flow of a Competition

1) The Petitioner submits the Verifier Ethereum can
execute code &
handle payments

2) A Creator submits a Solver and pays a deposit :
automatically!

3) a. A Tester (human being) finds a “counter-instance”
=> Solver rejected, Tester receives the deposit

b. No “counter-instance” found within a predefined time period BloB, el Sl
| ' fully transparent

=> Solver accepted, deposit refunded to Creator processes

Submitting a Verifier

Step 1) Deploy on Ethereum Ethereum
OxAddress
Source : EVM Verifier
Code ‘ comple \ Bytecode Deploy \ Smart
| | Contact
Step 2) Submit on the Platform Our Platform’s Smart Contact
OxAddress J OxAddress §
(from previous step) o & “ EVM
: \e
Submit _ ng‘(?\p:(ded(ess Bytecode
= N \ Parsed it @®*
ource Parse
Code | Tarse Sgucrlce Parsed
ode Source \
Code SN Source
Restore / Code
Similar process when submitting a Solver I 4

Enforcing Solver Complexity Constraints
* The compiler outputs instructions that measure steps & space used by Solvers

* The Petitioner submits one more function to limit the allowed steps/space of Solvers:
ComplexityConstraints: instance - (max_steps, max_space)

Limitations
* Verifiers & Solvers must be able to be implemented (no pure theoretic constructs)
* Verifiers & Solvers must run in (gas) attainable time/space
> Hint: Verifiers can utilize the fail _reason parameter to reduce complexity
* Solvers can only be judged per instance, not on average

What ‘s Next: Proofs of correctness

The Platform will be able to, also, validate proofs of correctness | Computer-based

. . proof validation
* Definitely correct accepted algorithms il o AUTEE e

* Not relying on Testers - thus error-free
 No need to wait for a predefined time period -

Acknowledgments

I'd like to thank my advisor prof. Eugénie Foustoucos for her constant guidance

Some Related Work

» Dilia Rodriguez, 2016, “Verification Games: Crowd-Sourced Formal Verification”. Air Force Research
Laboratory AFRL-RI-RS-TR-2016-096, URL.: https://apps.dtic.mil/sti/pdfs/AD1006471.pdf

e Borching Su, 2018, “MathCoin: A Blockchain Proposal that Helps Verify Mathematical Theorems In
Public”. IACR Cryptol. ePrint Arch. 2018: 271, URL: https://eprint.iacr.org/2018/271.pdf

e For alist of platforms for “Algorithm Programming Competitions” see https://cs.au.dk/~gerth/code
(NOTE: Our Platform differs from listed ones as it aims to solve problems of interest for Petitioners
while the listed ones pose problems already solved as a mean to challenge the contestants)

References (Ethereum)

 Vitalik Buterin, 2013. “A Next-Generation Smart Contract and Decentralized Application
Platform”. URL.: https://ethereum.org/en/whitepaper

* Gavin Wood, 2014. “Ethereum: A Secure Decentralised Generalised Transaction Ledger”. URL:
http://gavwood.com/Paper.pdf

https://ethereum.org/en/whitepaper
http://gavwood.com/Paper.pdf
https://apps.dtic.mil/sti/pdfs/AD1006471.pdf
https://eprint.iacr.org/2018/271.pdf
https://cs.au.dk/~gerth/code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

