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1. Introduction

I Modern applications employ libraries and algorithms like aggregates,
top-K results, nearest neighbor machine learning etc. to process big data

I However, new types of data are introduced over time, leading to
performance and efficiency challenges, as they are often not compatible
with existing implementations

I To deal with these issues,compilers utilize Intermediate Representation
(IR) to provide universal computing functions and cross optimizations
between different libraries and algorithms
. An IR provides an abstraction for incompatible libraries, hiding details

about the target execution platform and expressing data tasks under a
unique interface

2. Our Problem

The deployment of an IR heavily depends on the tools utilized and the
scope of the big data environment. This may lead to problems concerning
adaptability and portability when deployed on different execution
environments.

3. Proposal

We propose a framework that provides a Java-implemented IR, which takes
as input a context-free grammar with function structures and creates
portable containers via a SableCC compiler
I The containers are easily deployable over multiple environments and

multiple data processing frameworks, improving compilation and
execution times

I The containers are also deployable on multi-cluster serverless
environments, supporting parallel execution

4. Design And Challenges

I Framework objective
. Compiles computational functions described in an input grammar into

portable containers

I Design Challenges
. Containers must include an operational code which can be executed in

multiple computing environments and support standalone usage
. The output data of a container should be used by other containers

without any extra changes, in order to optimize execution and reduced
processing times between operations

. The container’s functions must be available for execution as many
times as possible without having to rebuild the entire image of the
function

5. Components

I The framework uses a grammar with function structures as an input,
given by the developer

I Intermediate Representation: Captures the structures described in the
grammar

I SableCC backend compiler: constructs containers based on function
structures

I Portable containers: Deployable in multiple data environments, they
execute computations on input queries

6. System

I Intermediate Representation
. Our IR implementation compiles big data function structures into

universal functions, ready to use in big data environments
. The functions must contain well structured semantics in order to be

converted to container executables
I Data Types

. Scalars: int, long, double, char etc.

. Lists: multiple values of Scalar types into a single data object e.g.
String of multiple char values, dynamic array of numeric values,
strings or key-value pair

I Functions
. Big data operators that take as input a query list with multiple entries

of Scalar values, (key-value pair or CSV line of multiple values). May
require additional Scalars as parameters
I filter(query, comparison), aggregate(query, command),

valueScore(query), topKValue(query, k), topKScore(query, k),
nearestNeighbor(query, x, y, k, g1, g2)

I Runtime Environment
. Generates code for the function structures captured by the IR, takes

the main components of the cached function: input, computations
and output/result and recreates them in Java executable code

I Backend Compiler
. Our framework uses an extended version of the SableCC backend

compiler. The compiler converts the executable code created by the
runtime for IR function into JAR executable files, which are then
enclosed into portable containers

. The containers can run on multiple environments and execute their
code when they receive a query and associated parameters as input

7. Serverless Containers

These containers accept query list inputs from users and output the result
either as a new query list (filtering), or within the screen (all functions
besides filtering)
I Serverless Container Benefits

. Lower operational and deployment cost (Pay-as-you-use pricing
model)

. High elasticity (Automatic resource allocation based on the current
load demands, which scales to zero during idle periods)

. Maintenance free services and independence of programming language
and tools
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